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Synopsis: 
Past advances in Solar and Space Physics have primarily leveraged single point observations or ad 
hoc combinations of spacecraft, while missions such as Cluster, MMS, and THEMIS have paved 
the way toward a “constellation era” in Heliophysics. This new era allows for unprecedented 
advancements into our understanding of the fundamental spatiotemporal nature of Solar and Space 
Physics, but presents its own set of unique challenges. This white paper seeks to outline the benefits 
and challenges of constellations, ranging from the Heliophysics System Observatory, to 
constellations consisting of a small number of spacecraft, to large-number constellations. In 
moving toward this constellation era, investments are required by our sponsors to best enable our 
continued scientific advancement in Solar and Space Physics. 
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History of Space Physics – Journey from Single-point to Multi-point: 

The space age rapidly began with a number of first observations, enabled by the rapid access to 
space. Sputnik 1 launched in 1957 as the first artificial satellite and allowed for explorations of the 
density of the upper atmosphere, through investigations atmospheric drag [e.g., 1], as well as 
insight into the ionosphere through study of the propagation of its radio signals. This was shortly 
followed by Explorer 1 in 1958, as the first American artificial satellite, which led to the hypothesis 
of the Van Allen Radiation belts [2]. The first spacecraft to explore interplanetary space, be it on 
accident, was Luna 1 in 1959. Three years later, Mariner 2 would become the first spacecraft to 
successfully conduct a planetary encounter with its flyby of Venus. From those early firsts, new 
exploratory missions would include, amongst others, Voyager 1 and 2 as the first spacecraft to 
visit the Gas Giants, with Voyager 2 also being the only in situ investigation of the Ice Giants to 
this day. Both Voyagers would later become the first, and so far, only, in situ observations of 
interstellar space. AMPTE in 1984 would pioneer international space collaboration with its fleet 
satellites and include active experiments upstream of Earth’s magnetosphere. Ulysses, launched in 
1990, would become the only spacecraft to have observed the high latitude solar wind. Most 
recently, Parker Solar Probe has become the first spacecraft to directly sample the sub-Alfvénic 
solar wind. 

These advances have pushed the boundaries of what single point observations are able to newly 
explore and what discoveries can be elucidated from them. While technological advancements 
have enabled better, more accurate, observations at higher time resolutions and sensitivities, most 
of the Heliosphere -- spanning the sub-Alfvénic solar wind [e.g., 3, 4], polar solar wind through 
the solar cycle [e.g., 5, 6, 7], solar wind entry into planetary magnetospheres [e.g., 8, 9, 10, 11, 12, 
13], the Van Allen radiation belts [e.g., 14, 15, 16, 17], the buildup and decay of the ring current’s 
oxygen torus [e.g., 18, 19], nearly every layer of the ionosphere from the turbopause and higher 
[e.g., 20, 21, 22, 23, 24], the inner workings of magnetic reconnection at ion and electrons scales 
[e.g., 25, 26], planetary current systems and magnetospheric dynamics from Mercury to Saturn 
[e.g., 27, 28, 29, 30, 31], plasma interactions with moons and comets [e.g., 32, 33, 34, 35, 36], 
outer planetary radiation belts [e.g., 37, 38, 39], to the transition through the heliopause into the 
local interstellar medium [e.g., 40, 41] -- has now been sampled directly at least once.  

This insight, from the vast history of single point observations, has now enabled us to better 
characterize the gaps in our understanding and envision new mission architectures that allow the 
spatiotemporal structuring and evolution of the Heliosphere to be revealed. With an even 
increasing urgency, future scientific investigations needs to use observations from multiple 
missions and/or rely on new targeted constellations. This will challenge the field and sponsors to 
find ways to support and expand upon these activities with a multi-faceted approach that allows 
for these different multi-point architectures. 
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The Role of the Heliophysics 
System Observatory: 

With the combination of 
concurrent missions, including 
those in extended operations 
after the conclusion of their 
prime mission duration, NASA 
has established the Heliophysics 
System Observatory (HSO). 
While the HSO is largely 
comprised of missions in orbits 
driven by their prime mission, 
and without consideration of 
conjunctions with other 
observatories, it has provided 
the unique opportunity for 
researchers to investigate large-
scale variations in the solar wind 
and Earth’s magnetosphere 
through being able to construct a 
serendipitous constellation. This 
has been used in great success 
for investigations into large-
scale longitudinal variations of 
CMEs [e.g., 42, 43, 44, 45], the 
radial evolution of CIRs in the 
solar wind [e.g., 46, 47, 48], 
EMIC wave generation in the 
global magnetosphere [e.g., 49], 
etc.  

However, the reliance of the 
serendipitous timing of events 
and conjunctions within the HSO, along with it primarily being of use for studying large-scale 
variations rather than for mesoscale or microscale structuring, limits it from being able to address 
some of the most fundamental outstanding questions of Solar and Space Physics. As such, new 
dedicated constellations are required in the next decade to fill these targeted gaps. Additionally, 
new missions are typically not encouraged to consider how different launch dates may allow them 
to further leverage these pre-existing assets during proposal and development.  

 
 
 

Figure 1: The HSO has been increasingly leveraged in investigations 
of large-scale variability within Solar and Space Physics. However, 
studies using the HSO must wait for fortuitous conjunctions and new 
mission formulation is discouraged from designing around a new 
missions’ place in the broader HSO. From [42]. 
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The Role of Small Constellations: 

Constellations comprised of a limited number of spacecraft, such as two to five satellites, have 
demonstrated the great utility of such architectures for in situ sampling of the space plasma 
environment. The Cluster [51] and Magnetospheric Multiscale [MMS, 52] missions both used a 
tetrahedral formation that allowed the use of novel 
techniques to better explore the fundamental nature of 
space physics [e.g., 53, 54, 55, 56]. The THEMIS mission 
[57] originally consisted of five spacecraft with various 
apogees to allow in-depth exploration of substorm timing 
and bursty bulk flows within the magnetotail [e.g., 50, 
58]. Two of the THEMIS spacecraft were re-purposed for 
lunar-plasma interactions as the ARTEMIS mission [e.g., 
59], with the remaining THEMIS and ARTEMIS 
spacecraft continuing to provide multi-point observations 
throughout the outer magnetosphere to lunar distances 
[e.g., 60, 61]. 

New missions are being proposed and developed to utilize 
small number of spacecraft constellation architectures to 
explore Heliophysics, e.g. InterMeso [62, 63], MHM [64], 
MIO [65], MAKOS [66], GDC, and Daedalus [67]. The 
benefit of these architectures is the ability to use 
multipoint techniques on platforms with a diverse range 
of parameter observations, allowing for in-depth 
investigations across the constellation spacing. This 

Figure 2. Constellations using a small number of spacecraft have successfully revealed 
spatiotemporal variations in Solar and Space Physics. Dedicated constellations allow 
spacecraft to be put into orbits that optimize inter-spacecraft separations and formations 
to address outstanding problems in Solar and Space Physics. From [50]. 

Figure 3. Constellations of four spacecraft 
can be flown in a tetrahedron 
configuration, allowing for detailed 
investigations of the gradients and 
transitionary boundaries that are 
fundamental to Solar and Space Physics. 
From [68]. 

https://lws.larc.nasa.gov/gdc/
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unlocks the ability to determine higher order mesoscale variations in a system and probe the system 
using multi-point analysis techniques. Due to the limited number of spacecraft, however, these 
missions tend to be more targeted and tailored in their science objectives and are not as well-suited 
for reaching system-level insights. The targeted approach of these small-number constellations is 
optimized for significant science return and potentially paradigm shifting insight, but primarily for 
a few aspects of Solar and Space Physics.  

The Role of Large Constellations: 

Constellations of many spacecraft (i.e., greater than five spacecraft) enable global, distributed 
observations. A clear example of such an architecture is AMPERE/AMPERE-NEXT [69, 70, 71, 
72], a unique public-private partnership funded by the NSF. This dataset, derived from the 
constellation of 66 Iridium Communications Network spacecraft, allows for the construction of 
global field-aligned current maps using avionics magnetometers on the spacecraft. While the 
constellation configuration limits spatial resolution of the AMPERE current distributions, the 
nature of this globally-distributed in situ measurement enables system-level insight of an important 

Figure 4. AMPERE utilizes magnetometers onboard 66 Iridium Communications 
spacecraft to construct maps of the global Field aligned current systems. This has 
required robust calibration and data cleaning efforts as well as novel visualization 
techniques, but also demonstrates the power of constellations of large numbers of 
spacecraft at addressing long outstanding issues in Solar and Space Physics. 



The Future of Heliophysics Research through Targeted use of Constellations 

White Paper to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033 5 

aspect of magnetosphere-ionosphere coupling. A constellation architecture in this fashion has yet 
to be replicated in the Solar and Space Physics community as a stand-alone science mission, but 
is necessary for advancing understanding of full system dynamics and feedback. 

The primary benefit of many-number constellations is the ability to reach global coverage across 
multiple scales, rather than the targeted investigations of small-number constellations. 
Additionally, these architectures can unlock observations across multiple domains, i.e., ability to 
span the solar wind, outer magnetosphere, inner magnetosphere, and ionosphere-thermosphere-
mesosphere system. Large-number constellations can also leverage advanced tomography 
techniques, as well as higher order spatiotemporal reconstructions [e.g., 72, 73]. These added 
capabilities have led new large constellations to be formulated and developed for the next decade, 
e.g., HelioSwarm, MagneToRE [73], MagCon [74], and PILOT [75, 76]. 

Due to the number of spacecraft required, large-number constellations must have more tailored 
payloads, only being able to support up to a few select observations. The need for large numbers 
of sensors also motivates increased use of commercial-off-the-shelf (COTS) parts to reduce the 
total cost of the constellation. While COTS allows for potentially cheaper large constellation 
missions, they also come with their own considerations. COTS-based instrumentation typically 
has increased noise/background levels, coarser resolution, more limited dynamic range, and 
limited reliability in space applications (i.e., not rated to withstand radiation effects). Some science 
questions may be able to be answered with the targeted performance capabilities from COTS 
sensors [e.g., Luner Vertex], but not all.  

Another consideration for large constellations is the 
challenge in data visualization. By achieving a 
constellation of many spacecraft distributed over a large 
range of spatial locations, visualization needs to move 
beyond time-series stack plots. This also allows a unique 
opportunity for the observations to be used in inversions to 
create maps of directly sampled and derived quantities, 
such as done for AMPERE [e.g., 72].  

Cross-calibration between observatories also increases 
exponentially with additional spacecraft. In addition to re-
tooling inter-calibration methods currently used by small-
number constellations like MMS, large-number 
constellations will also require advancement in AI/ML 
techniques incorporated into ground processing that have 
so far not been demonstrated to be sufficiently robust.  

A large increase to the number of spacecraft operating 
simultaneously will also require investments into the Deep 
Space Network (DSN) and Near Space Network (NSN) to 
facilitate the dramatic increase in contacts required. While 
some in the commercial industry (e.g., Amazon Web 
Services) have begun to expand private options for 
spacecraft contacts in Low Earth Orbit, constellations 
further from Earth require additional agency investment. 

Figure 5. While COTS sensors are not 
viable solutions for all science questions, 
COTS sensors are beginning to be 
leveraged for low-cost instrument options 
for targeted missions where they are 
applicable. An array of Bartington 
Mag566 sensors are being used on the 
upcoming NASA Lunar Vertex mission.  

https://eos.unh.edu/helioswarm/mission
https://www.jhuapl.edu/NewsStory/211018b-lunar-vertex
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Additionally, new technologies (e.g., laser communications) to increase bandwidth and decrease 
contact length should be a priority for advancement of communication infrastructure.  

The Need for a Multitude of Constellations in the Next Decade: 

While Solar and Space Physics is made up of a large number of sub-fields with a large diversity 
of science questions and topics, the field as a whole is moving toward constellation architectures 
for addressing the questions that have arisen over the last decade. In fact, three of the last four 
Explorer line missions to proceed to Phase B have been multi-point observatories (i.e., 
HelioSwarm, PUNCH, and TRACERS). While some investigations have been able to leverage the 
HSO, which is in and of itself invaluable, the community requires additional, targeted 
constellations going forward. Both small-number constellations and large-number constellations 
are needed in concert with the HSO to answer the diverse range of open questions, and the different 
sub-fields require their own targeted missions. As such, agencies serving the Heliophysics 
community need to prepare for these opportunities.  

 

Ultimately, realizing a constellation-enabled future for Solar and Space Physics, while still 
embracing the diversity of sub-fields and science questions, will require an increase in the NASA 
Heliophysics budget, as well as investments into communication infrastructure. Increased support 
from related NSF and NOAA departments are also required for full realization of a multi-
constellation era in Heliophysics. This will require the Solar and Space Physics Decadal to take a 
progressive, forward-looking stance on Heliophysics funding.  

 
  

The main outstanding challenges and needs going forward are: 

- Need to best leverage the HSO for future investigations, while understanding and balancing 
the need for new dedicated and targeted constellations.  

- Need to coordinate new constellations with the pre-existing HSO, and the mechanism to do 
so during formulation, proposal, and development phases.  

- Need for funding mechanisms to allow multiple constellation missions to be realized within the 
next decade across the sub-fields of Solar and Space Physics.  

- Need for development of better AI/ML techniques to allow for ground cross-calibration of 
instruments on constellations with a large number of spacecraft.  

- Need to develop improved visualization of observations from large spacecraft constellations.  
- Need for investment into the DSN and NSN, as well as general communications technology, 

to better support many simultaneous multi-spacecraft constellations.  
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